

White Paper

Flow and Conversion Formulas

Table of Contents	
Common Formulas	2
Conversion Formulas	3

Flow and Conversion Formulas

VAL-MATIC COMMON FORMULAS

Darcy-Weisbach Formula for headloss in a pipe:

$$\Delta H = f(L/D) x (v^2/2g)$$
 $\Delta H = K (v^2/2g)$

Flow equation using Cv Flow Coefficient:

$$Q = Cv (\Delta P / S_g)^{1/2}$$
 $\Delta P = (Q / Cv)^2 S_g$

Collapse pressure of thin walled steel pipe for Air/Vacuum valve sizing:

 $P=16,250,000 (T/d)^3$

Annual pumping costs for a given headloss and flow rate:

 $A = (1.65 \, Q \, \Delta H \, S_g \, C \, U) / E$

Where:

A = annual energy cost, \$

C = cost of electricity, \$/kW-hr

CFS = flow rate, cu-ft/sec

Cv = flow coefficient defined as gpm of 60F water with 1 psi pressure drop

d = diameter of pipe or valve, in

D = diameter of pipe or valve, ft

E = efficiency of pump and motor set, percent /100 (0.80 typical)

f = pipe friction factor (.019 for 12 in iron)

g = acceleration due to gravity, 32.2 ft/sec2

 ΔH = head loss, ft of water

K = resistance coefficient, dimensionless

L = length of pipe, ft

P = collapse pressure, psi

 ΔP = pressure drop, psi

Q = flow rate, gpm

S_g = specific gravity, dimensionless (water = 1.0)

T = wall thickness, in

U = usage, percent / 100 (1.0 equals 24 hrs per day)

v = flow velocity, ft/sec

VAL-MATIC CONVERSION FORMULAS

LIQUID FLOW:

GPM = FPS x 2.448 x d^2

GPM = CFS x 448.83

 $GPM = MGD \times 694.4$

 $GPM = Bbl/day \times .02917$

GPM = $L/SEC \times 15.853$

FPS = GPM x .4085 \div d²

FPS = $M/SEC \times 3.2808$

FPS = CFS x $183.35 \div d^2$

LPS = CFM \times .4719

CFS = CMS x 35.315

CFS = $L/MIN \div 1699.3$

CFS = $GPM \times .002228$

CFS = $MGD \times 1.5472$

 $C_{V} = 29.82 \text{ x d}^{2} \text{ V} \div \text{K}$

 $K = 889.2 \times d^4 \div (C_V)^2$

 $K_v = C_v x .865$

PRESSURE:

 $FT(W) = PSI \times 2.3106$

PSI = FT(W) x.43278

 $PSI = IN(Hg) \times .49115$

PSI = KPa x .14504

PSI = MPa x 145.04

PSI = BAR x 14.504

 $PSI = Kg/cm^2 \times 14.223$

BAR = MPa \times 10

TEMPERATURE:

 $^{\circ}F = 9/5 \times ^{\circ}C + 32$

F = R - 459.69

 $^{\circ}$ C = 5/9 x ($^{\circ}$ F - 32)

°C = °K - 273.16

LENGTH:

IN = $M \times 39.37$

IN = $CM \div 2.54$

IN = $MM \div 25.4$

IN = MICRON \div 25400

 $MIL = IN \times 1000$

 $MIL = MICRON \div 25.4$

FT = $CM \times .03281$

FT = $M \times 3.281$

FT = $KM \times 3281$

VOLUME:

 $FL OZ = ML \times 0.0338$

FL OZ = $GAL \times 128$

FL OZ = 100 DROPS

CU IN = $GAL \times 231$

CU IN = $L \times 61.025$

CU FT = GAL x .13368

CU FT = CU M x 35.315

CU FT = $L \times .035315$

GAL = $L \times .2642$

ML = CC

WEIGHT:

LB = $KG \times 2.2046$

LB = GRAMS \div 453.59

LB = $TON \times 2000$

LB = METRIC TON x 2205

LB = $N \times 0.2248$

 $LB(W) = GAL \times 8.3453$

 $LB(W) = CU FT \times 62.425$

LB(W) = CU IN x.0361

MG/L = PPM

OZ = LB \times 16

Flow and Conversion Formulas

VAL-MATIC CONVERSION FORMULAS

TORQUE:

 $FT-LB = N-M \times 0.7376$

WHERE:

Bbl = Barrels

CFM = Cubic feet per minute

CFS = Cubic feet persecond

°C = Degrees Celsius

CC = Cubic centimeter

CM = Centimeter

CMS = Cubic meter per second

C_v = Flow coefficient, GPM [@] 1 Psi

d = diameter of pipe or valve, in

°F = DegreesFahrenheit

FL OZ = Fluidounce

FPS = Feet per second

FT = Feet

FT(W) = Feet of Water

GAL = Gallon

GPM = Gallons per minute

IN = Inch

IN(Hg) = Inches of Mercury

K = Flow coefficient dimensionless

K_v = Flow coefficient, M³/hr @ I Bar

KG = Kilogram

KM = Kilometer

KPA = Kilopascal

°K = Degrees Kelvin

L = Liter

LB = Pound

LB(W) = Pounds of Water at 60F

LPS = Liters per second

M = Meter

MG = Milligram

MGD = Million gallons per day

MIL = mil (1000th of an inch)

ML = Milliliter

MM = Millimeter

MPA = Megapascal

N = Newton

PPM = Parts per million

°R = Degrees Rankin

OZ = Ounce, weight

PSI = Pounds per square inch

SEC = Seconds